Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.823
Filtrar
1.
Lakartidningen ; 1212024 03 12.
Artigo em Sueco | MEDLINE | ID: mdl-38470274

RESUMO

More than 2.8 billion individuals worldwide suffer from untreated caries. Over ninety-five percent of all 50-year-olds in Sweden have caries experience. Caries is the most common cause of dental restorations and tooth loss. Tooth loss is associated with cardiovascular diseases, dementia, and death. Periapical tooth infections caused by caries can spread and cause severe infection, however rarely with lethal outcome. Sugars are a common risk factor for caries and other noncommunicable diseases such as cardiovascular diseases, diabetes, and obesity.  Caries is a consequence of sugar-provoked acid production and dysbiosis in the tooth biofilm (dental plaque). There are several conditions which may increase the risk for dental caries, such as different medical conditions and medications which may cause dry mouth. Treatment costs for caries are high.


Assuntos
Doenças Cardiovasculares , Cárie Dentária , Doenças não Transmissíveis , Perda de Dente , Humanos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Cárie Dentária/epidemiologia , Cárie Dentária/etiologia , Açúcares Ácidos , Nível de Saúde
2.
Chem Commun (Camb) ; 60(21): 2930-2933, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38372418

RESUMO

Pseudaminic acid (Pse) on pathogenic bacteria exopolysaccharide engages with the sialic acid-binding immunoglobulin-type lectin (Siglec)-10 receptor on macrophages via the critical 7-N-acetyl group. This binding stimulates macrophages to secrete interleukin 10 that suppresses phagocytosis against bacteria, but can be reverted by blocking Pse-Siglec-10 interaction with Pse-binding protein as a promising therapy.


Assuntos
Interleucina-10 , Macrófagos , Açúcares Ácidos , Interleucina-10/metabolismo , Macrófagos/metabolismo , Fagocitose/fisiologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
3.
Angew Chem Int Ed Engl ; 63(15): e202318523, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38224120

RESUMO

Cell surface sugar 5,7-diacetyl pseudaminic acid (Pse5Ac7Ac) is a bacterial analogue of the ubiquitous sialic acid, Neu5Ac, and contributes to the virulence of a number of multidrug resistant bacteria, including ESKAPE pathogens Pseudomonas aeruginosa, and Acinetobacter baumannii. Despite its discovery in the surface glycans of bacteria over thirty years ago, to date no glycosyltransferase enzymes (GTs) dedicated to the synthesis of a pseudaminic acid glycosidic linkage have been unequivocally characterised in vitro. Herein we demonstrate that A. baumannii KpsS1 is a dedicated pseudaminyltransferase enzyme (PseT) which constructs a Pse5Ac7Ac-α(2,6)-Glcp linkage, and proceeds with retention of anomeric configuration. We utilise this PseT activity in tandem with the biosynthetic enzymes required for CMP-Pse5Ac7Ac assembly, in a two-pot, seven enzyme synthesis of an α-linked Pse5Ac7Ac glycoside. Due to its unique activity and protein sequence, we also assign KpsS1 as the prototypical member of a previously unreported GT family (GT118).


Assuntos
Glicosiltransferases , Ácidos Siálicos , Glicosiltransferases/genética , Açúcares Ácidos , Bactérias/metabolismo
4.
J Agric Food Chem ; 72(3): 1419-1428, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38206567

RESUMO

Vitamin C, also known as ascorbic acid, is an essential vitamin that cannot be synthesized by the human body and must be acquired through our diet. At present, the precursor of vitamin C, 2-keto-l-gulonic acid (2-KGA), is typically produced via a two-step fermentation process utilizing three bacterial strains. The second step of this traditional two-step fermentation method involves mixed-culture fermentation employing 2-KGA-producing bacteria (Ketogulonicigenium vulgare) along with associated bacteria. Because K. vulgare has defects in various metabolic pathways, associated bacteria are needed to provide key substances to promote K. vulgare growth and 2-KGA production. Unlike previous reviews where the main focus was the interaction between associated bacteria and K. vulgare, this Review presents the latest scientific research from the perspective of the metabolic pathways associated with 2-KGA production by K. vulgare and the mechanism underlying the interaction between K. vulgare and the associated bacteria. In addition, the dehydrogenases that are responsible for 2-KGA production, the 2-KGA synthesis pathway, strategies for simplifying 2-KGA production via a one-step fermentation route, and, finally, future prospects and research goals in vitamin C production are also presented.


Assuntos
Ácido Ascórbico , Açúcares Ácidos , Humanos , Fermentação , Açúcares Ácidos/metabolismo , Ácido Ascórbico/metabolismo , Vitaminas
5.
Chem Commun (Camb) ; 60(11): 1428-1431, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38205715

RESUMO

Truncated thioester N,S-diacetylcysteamine (SNAc) was utilised as a co-factor mimic for PseH, an acetyl-coA dependent aminoglycoside N-acetyltransferase, in the biosynthesis of the bacterial sugar, pseudaminic acid. Additionally, an azido-SNAc analogue was used to smuggle N7-azide functionality into the pseudaminic acid backbone, facilitating its use as a reporter of pseudaminyltransferase activity.


Assuntos
Glicosiltransferases , Açúcares Ácidos , Próteses e Implantes
6.
J Microbiol Biotechnol ; 34(2): 457-466, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38044713

RESUMO

Cellobiose dehydrogenases (CDHs) are a group of enzymes belonging to the hemoflavoenzyme group, which are mostly found in fungi. They play an important role in the production of acid sugar. In this research, CDH annotated from the actinobacterium Cellulomonas palmilytica EW123 (CpCDH) was cloned and characterized. The CpCDH exhibited a domain architecture resembling class-I CDH found in Basidiomycota. The cytochrome c and flavin-containing dehydrogenase domains in CpCDH showed an extra-long evolutionary distance compared to fungal CDH. The amino acid sequence of CpCDH revealed conservative catalytic amino acids and a distinct flavin adenine dinucleotide region specific to CDH, setting it apart from closely related sequences. The physicochemical properties of CpCDH displayed optimal pH conditions similar to those of CDHs but differed in terms of optimal temperature. The CpCDH displayed excellent enzymatic activity at low temperatures (below 30°C), unlike other CDHs. Moreover, CpCDH showed the highest substrate specificity for disaccharides such as cellobiose and lactose, which contain a glucose molecule at the non-reducing end. The catalytic efficiency of CpCDH for cellobiose and lactose were 2.05 x 105 and 9.06 x 104 (M-1 s-1), respectively. The result from the Fourier-transform infrared spectroscopy (FT-IR) spectra confirmed the presence of cellobionic and lactobionic acids as the oxidative products of CpCDH. This study establishes CpCDH as a novel and attractive bacterial CDH, representing the first report of its kind in the Cellulomonas genus.


Assuntos
Desidrogenases de Carboidrato , Cellulomonas , Cellulomonas/genética , Cellulomonas/metabolismo , Celobiose/metabolismo , Lactose , Açúcares Ácidos , Espectroscopia de Infravermelho com Transformada de Fourier , Protocaderinas
7.
Angew Chem Int Ed Engl ; 63(2): e202313985, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38014418

RESUMO

3-Deoxy-d-manno-oct-2-ulosonic acid (Kdo) is an eight-carbon monosaccharide found widely in bacterial lipopolysaccharides (LPSs) and capsule polysaccharides (CPSs). We developed an indirect method for the stereoselective synthesis of α-Kdo glycosides with a C3-p-tolylthio-substituted Kdo phosphite donor. The presence of the p-tolylthio group enhanced the reactivity, suppressed the formation of elimination by-products (2,3-enes), and provided complete α-stereocontrol. A variety of Kdo α-glycosides were synthesized by our method in excellent yields (up to 98 %). After glycosylation, the p-tolylthio group can be efficiently removed by free-radical reduction. Subsequently, the orthogonality of the phosphite donor and thioglycoside donor was demonstrated by the one-pot synthesis of a trisaccharide in Helicobacter pylori and Neisseria meningitidis LPS. Moreover, an efficient total synthesis route to the challenging 4,5-branched Kdo trisaccharide in LPSs from several A. baumannii strains was highlighted. To demonstrate the high reactivity of our approach further, the highly crowded 4,5,7,8-branched Kdo pentasaccharide was synthesized as a model molecule for the first time. Additionally, the reaction mechanism was investigated by DFT calculations.


Assuntos
Glicosídeos , Fosfitos , Oligossacarídeos , Açúcares Ácidos , Lipopolissacarídeos , Trissacarídeos
8.
Bioresour Technol ; 393: 130158, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070579

RESUMO

Mucic acid holds promise as a platform chemical for bio-based nylon synthesis; however, its biological production encounters challenges including low yield and productivity. In this study, an efficient and high-yield method for mucic acid production was developed by employing genetically engineered Saccharomyces cerevisiae expressing the NAD+-dependent uronate dehydrogenase (udh) gene. To overcome the NAD+ dependency for the conversion of pectin to mucic acid, xylose was utilized as a co-substrate. Through optimization of the udh expression system, the engineered strain achieved a notable output, producing 20 g/L mucic acid with a highest reported productivity of 0.83 g/L-h and a theoretical yield of 0.18 g/g when processing pectin-containing citrus peel waste. These results suggest promising industrial applications for the biological production of mucic acid. Additionally, there is potential to establish a viable bioprocess by harnessing pectin-rich fruit waste alongside xylose-rich cellulosic biomass as raw materials.


Assuntos
Citrus , Saccharomyces cerevisiae , Açúcares Ácidos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilose/metabolismo , Fermentação , Citrus/metabolismo , NAD/metabolismo , Pectinas , Engenharia Metabólica/métodos
9.
Artigo em Inglês | MEDLINE | ID: mdl-37527605

RESUMO

A novel chemical assay, the so-called Kdo-DMB-liquid chromatography (LC) assay, was used for the accurate and cost-effective determination of the endotoxin content in supernatants of Gram-negative bacteria bioreactor samples. During mild acid hydrolysis, the endotoxin-specific sugar acid 3-deoxy-D-manno-oct-2-ulsonic acid (Kdo) is quantitatively released. Kdo is reacted with 1,2-diamino-4,5-methylenedioxybenzene (DMB) to obtain the highly fluorescent derivate Kdo-DMB. It is separated from the reaction mixture by reversed phase-(U)HPLC and detected by fluorescence. From the Kdo content the endotoxin content of the sample is calculated. For three batch cultivations of Escherichia coli K12 and a fed-batch cultivation of Pseudomonas putida KT2440, the evolution of the endotoxin content in dependence on the cultivation time was monitored. Under optimal, constant cultivation conditions a linear correlation between the endotoxin content and the easy-to-access bioreactor parameters optical density at 600 nm and dry cell weight was found for both endotoxin kinds. Under stress cultivation conditions the E. coli K12 cultivation showed a stronger increase of the endotoxin content at harvest in comparison to optimal conditions. Optical density and dry cell weight may be used for production reactors as an economic real-time estimation tool to determine the endotoxin content at different cultivation time points and conditions. The optical density can further be used to establish straightforward sample dilution schemes for endotoxin quantification in samples of unknown endotoxin content. The endotoxin content [ng mL-1] measured by the Kdo-DMB-LC assay and the endotoxin activity [EU mL-1] obtained by the compendial Limulus Amoebocyte Lysate assay show a high correlation for the bacterial bioreactor samples tested.


Assuntos
Endotoxinas , Escherichia coli , Endotoxinas/análise , Bactérias , Açúcares Ácidos , Reatores Biológicos
10.
Sci Rep ; 13(1): 12593, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537165

RESUMO

Sialic acids (Sias) are a class of sugar molecules with a parent nine-carbon neuraminic acid, generally present at the ends of carbohydrate chains, either attached to cellular surfaces or as secreted glycoconjugates. Given their position and structural diversity, Sias modulate a wide variety of biological processes. However, little is known about the role of Sias in human adipose tissue, or their implications for health and disease, particularly among individuals following different dietary patterns. The goal of this study was to measure N-Acetylneuraminic acid (Neu5Ac), N-Glycolylneuraminic acid (Neu5Gc), and 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN) concentrations in adipose tissue samples from participants in the Adventist Health Study-2 (AHS-2) and to compare the abundance of these Sias in individuals following habitual, long-term vegetarian or non-vegetarian dietary patterns. A method was successfully developed for the extraction and detection of Sias in adipose tissue. Sias levels were quantified in 52 vegans, 56 lacto-vegetarians, and 48 non-vegetarians using LC-MS/MS with Neu5Ac-D-1,2,3-13C3 as an internal standard. Dietary groups were compared using linear regression. Vegans and lacto-ovo-vegetarians had significantly higher concentrations of Neu5Ac relative to non-vegetarians. While KDN levels tended to be higher in vegans and lacto-ovo-vegetarians, these differences were not statistically significant. However, KDN levels were significantly inversely associated with body mass index. In contrast, Neu5Gc was not detected in human adipose samples. It is plausible that different Neu5Ac concentrations in adipose tissues of vegetarians, compared to those of non-vegetarians, reflect a difference in the baseline inflammatory status between the two groups. Epidemiologic studies examining levels of Sias in human adipose tissue and other biospecimens will help to further explore their roles in development and progression of inflammatory conditions and chronic diseases.


Assuntos
Ácidos Siálicos , Açúcares Ácidos , Humanos , Ácidos Siálicos/química , Cromatografia Líquida , Açúcares Ácidos/química , Espectrometria de Massas em Tandem , Tecido Adiposo , Dieta Vegetariana
11.
Bioresour Technol ; 384: 129316, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37315626

RESUMO

Direct production of 2-keto-L-gulonic acid (2-KLG, the precursor of vitamin C) from D-glucose through 2,5-diketo-D-gluconic acid (2,5-DKG) is a promising alternative route. To explore the pathway of producing 2-KLG from D-glucose, Gluconobacter oxydans ATCC9937 was selected as a chassis strain. It was found that the chassis strain naturally has the ability to synthesize 2-KLG from D-glucose, and a new 2,5-DKG reductase (DKGR) was found on its genome. Several major issues limiting production were identified, including the insufficient catalytic capacity of DKGR, poor transmembrane movement of 2,5-DKG and imbalanced D-glucose consumption flux inside and outside of the host strain cells. By identifying novel DKGR and 2,5-DKG transporter, the whole 2-KLG biosynthesis pathway was systematically enhanced by balancing intracellular and extracellular D-glucose metabolic flux. The engineered strain produced 30.5 g/L 2-KLG with a conversion ratio of 39.0%. The results pave the way for a more economical large-scale fermentation process for vitamin C.


Assuntos
Gluconobacter oxydans , Gluconobacter oxydans/metabolismo , Glucose/metabolismo , Açúcares Ácidos/metabolismo , Ácido Ascórbico , Fermentação
12.
Infect Immun ; 91(7): e0009623, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37255490

RESUMO

All members of the family Chlamydiaceae have lipopolysaccharides (LPS) that possess a shared carbohydrate trisaccharide antigen, 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) that is functionally uncharacterized. A single gene, genus-specific epitope (gseA), is responsible for attaching the tri-Kdo to lipid IVA. To investigate the function of Kdo in chlamydial host cell interactions, we made a gseA-null strain (L2ΔgseA) by using TargeTron mutagenesis. Immunofluorescence microscopy and immunoblotting with a Kdo-specific monoclonal antibody demonstrated that L2ΔgseA lacked Kdo. L2ΔgseA reacted by immunoblotting with a monoclonal antibody specific for a conserved LPS glucosamine-PO4 epitope, indicating that core lipid A was retained by the mutant. The mutant strain produced a similar number of inclusions as the parental strain but yielded lower numbers of infectious elementary bodies. Transmission electron microscopy of L2ΔgseA-infected cells showed atypical developmental forms and a reduction in the number of elementary bodies. Immunoblotting of dithiothreitol-treated L2ΔgseA-infected cells lysates revealed a marked reduction in outer membrane OmcB disulfide cross-linking, suggesting that the elementary body outer membrane structure was affected by the lack of Kdo. Notably, lactic acid dehydrogenase release by infected cells demonstrated that L2ΔgseA was significantly more cytotoxic to host cells than the wild type. The cytotoxic phenotype may result from an altered outer membrane biogenesis structure and/or function or, conversely, from a direct pathobiological effect of Kdo on an unknown host cell target. These findings implicate a previously unrecognized role for Kdo in host cell interactions that facilitates postinfection host cell survival.


Assuntos
Chlamydia trachomatis , Lipopolissacarídeos , Lipopolissacarídeos/metabolismo , Sequência de Carboidratos , Epitopos , Açúcares Ácidos , Anticorpos Monoclonais
13.
Org Lett ; 25(22): 4150-4155, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37252906

RESUMO

A convenient and efficient approach was developed to synthesize α-Kdo O-glycosides based on the Tf2O/(p-Tol)2SO preactivation strategy using peracetylated Kdo thioglycoside as a donor. Under the optimized reaction conditions, several O-glycoside products, including α-(2 → 1)-, α-(2 → 2)-, α-(2 → 3)-, and α-(2 → 6)-Kdo products, were stereoselectively synthesized in high yields. Remarkably, a series of aromatic α-Kdo O-glycosides were first and successfully constructed in high yields. An SN2-like mechanism was revealed by DFT calculations and experimental results.


Assuntos
Glicosídeos Cardíacos , Glicosídeos , Glicosilação , Açúcares Ácidos , Lipopolissacarídeos
14.
Biochemistry (Mosc) ; 88(1): 131-141, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37068875

RESUMO

Inhibition of biosynthetic pathways of compounds essential for Trypanosoma cruzi is considered as one of the possible action mechanisms of drugs against Chagas disease. Here, we investigated the inhibition of galactonolactone oxidase from T. cruzi (TcGAL), which catalyzes the final step in the synthesis of vitamin C, an antioxidant that T. cruzi is unable to assimilate from outside and must synthesize itself, and identified allylbenzenes from plant sources as a new class of TcGAL inhibitors. Natural APABs (apiol, dillapiol, etc.) inhibited TcGAL with IC50 = 20-130 µM. The non-competitive mechanism of TcGAL inhibition by apiol was established. Conjugation of APABs with triphenylphosphonium, which ensures selective delivery of biologically active substances to the mitochondria, increased the efficiency and/or the maximum percentage of TcGAL inhibition compared to nonmodified APABs.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/metabolismo , Oxirredutases/metabolismo , Açúcares Ácidos/metabolismo
15.
J Biol Chem ; 299(5): 104609, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924942

RESUMO

KpsC is a dual-module glycosyltransferase (GT) essential for "group 2" capsular polysaccharide biosynthesis in Escherichia coli and other Gram-negative pathogens. Capsules are vital virulence determinants in high-profile pathogens, making KpsC a viable target for intervention with small-molecule therapeutic inhibitors. Inhibitor development can be facilitated by understanding the mechanism of the target enzyme. Two separate GT modules in KpsC transfer 3-deoxy-ß-d-manno-oct-2-ulosonic acid (ß-Kdo) from cytidine-5'-monophospho-ß-Kdo donor to a glycolipid acceptor. The N-terminal and C-terminal modules add alternating Kdo residues with ß-(2→4) and ß-(2→7) linkages, respectively, generating a conserved oligosaccharide core that is further glycosylated to produce diverse capsule structures. KpsC is a retaining GT, which retains the donor anomeric carbon stereochemistry. Retaining GTs typically use an SNi (substitution nucleophilic internal return) mechanism, but recent studies with WbbB, a retaining ß-Kdo GT distantly related to KpsC, strongly suggest that this enzyme uses an alternative double-displacement mechanism. Based on the formation of covalent adducts with Kdo identified here by mass spectrometry and X-ray crystallography, we determined that catalytically important active site residues are conserved in WbbB and KpsC, suggesting a shared double-displacement mechanism. Additional crystal structures and biochemical experiments revealed the acceptor binding mode of the ß-(2→4)-Kdo transferase module and demonstrated that acceptor recognition (and therefore linkage specificity) is conferred solely by the N-terminal α/ß domain of each GT module. Finally, an Alphafold model provided insight into organization of the modules and a C-terminal membrane-anchoring region. Altogether, we identified key structural and mechanistic elements providing a foundation for targeting KpsC.


Assuntos
Cápsulas Bacterianas , Glicosiltransferases , Cápsulas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glicolipídeos/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/química , Lipopolissacarídeos/metabolismo , Açúcares Ácidos/metabolismo , Transferases/metabolismo , Polissacarídeos Bacterianos/metabolismo
16.
Bioresour Technol ; 372: 128672, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36702324

RESUMO

One-step fermentation to produce 2-keto-l-gulonic acid (2-KLG), the precursor of vitamin C, is a long-term goal. Improvement of the enzyme's activity through engineering could benefit 2-KLG production. This study aimed to conduct a semi-rational design of l-sorbose dehydrogenase (SDH) through structure-directed, to screen mutants that could enhance the 2-KLG titer. First, the predicted structure of SDH was obtained using AlphaFold2. The key mutation sites in the substrate pocket were identified by Ala scanning. Subsequently, the mutant V336I/V368A was obtained by iterative saturation mutagenesis, which increased the yield of 2-KLG 1.9-fold. Finally, 5.03 g/L of 2-KLG was obtained by a two-stage temperature control fermentation method, and the conversion rate was 50%. Furthermore, experiments showed that knockdown of the l-sorbose-associated phosphotransferase system delays 2-KLG production. The results show that the production of 2-KLG was effectively increased through a combination of SDH engineering and fermentation optimization.


Assuntos
Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Rhodobacteraceae , Sorbose , Açúcares Ácidos
17.
Appl Microbiol Biotechnol ; 107(1): 153-162, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36445390

RESUMO

Gluconobacter is a potential strain for single-step production of 2-keto-L-gulonic acid (2-KLG), which is the direct precursor of vitamin C. Three dehydrogenases, namely, sorbitol dehydrogenase (SLDH), sorbose dehydrogenase (SDH), and sorbosone dehydrogenase (SNDH), are involved in the production of 2-KLG from D-sorbitol. In the present study, the potential SNDH/SDH gene cluster in the strain Gluconobacter cerinus CGMCC 1.110 was mined by genome analysis, and its function in transforming L-sorbose to 2-KLG was verified. Proteomic analysis showed that the expression level of SNDH/SDH had a great influence on the titer of 2-KLG, and fermentation results showed that SDH was the rate-limiting enzyme. A systematic metabolic engineering process, which was theoretically suitable for increasing the titer of many products involving membrane-bound dehydrogenase from Gluconobacter, was then performed to improve the 2-KLG titer in G. cerinus CGMCC 1.110 from undetectable to 51.9 g/L in a 5-L bioreactor after fermentation optimization. The strategies used in this study may provide a reference for mining other potential applications of Gluconobacter. KEY POINTS: • The potential SNDH/SDH gene cluster in G. cerinus CGMCC 1.110 was mined. • A systematic engineering process was performed to improve the titer of 2-KLG. • The 2-KLG titer was successfully increased from undetectable to 51.9 g/L.


Assuntos
Gluconacetobacter , Gluconobacter , Proteômica , Açúcares Ácidos/metabolismo , Sorbose/metabolismo , Gluconobacter/metabolismo , Gluconacetobacter/metabolismo
18.
Glycobiology ; 33(1): 47-56, 2023 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-36036828

RESUMO

Sialic acid (Sia) is a group of acidic sugars with a 9-carbon backbone, and classified into 3 species based on the substituent group at C5 position: N-acetylneuraminic acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc), and deaminoneuraminic acid (Kdn). In Escherichia coli, the sialate aldolase or N-acetylneuraminate aldolase (NanA) is known to catabolize these Sia species into pyruvate and the corresponding 6-carbon mannose derivatives. However, in bacteria, very little is known about the catabolism of Kdn, compared with Neu5Ac. In this study, we found a novel Kdn-specific aldolase (Kdn-aldolase), which can exclusively degrade Kdn, but not Neu5Ac or Neu5Gc, from Sphingobacterium sp., which was previously isolated from a Kdn-assimilating bacterium. Kdn-aldolase had the optimal pH and temperature at 7.0-8.0 and 50 °C, respectively. It also had the synthetic activity of Kdn from pyruvate and mannose. Site-specific mutagenesis revealed that N50 residue was important for the Kdn-specific reaction. Existence of the Kdn-aldolase suggests that Kdn-specific metabolism may play a specialized role in some bacteria.


Assuntos
Sphingobacterium , Sphingobacterium/genética , Sphingobacterium/metabolismo , Açúcares Ácidos/metabolismo , Frutose-Bifosfato Aldolase , Manose , Ácido N-Acetilneuramínico/metabolismo , Bactérias/metabolismo , Aldeído Liases/genética , Piruvatos
19.
J Org Chem ; 88(1): 154-162, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36520114

RESUMO

Naturally occurring 5-hydroxycytosine (5-OHCyt), which is associated with DNA damage, was recently found to reduce the hepatotoxicity of antisense oligonucleotides (ASOs) without compromising its antisense activity when used as a replacement for cytosine (Cyt). Additionally, sugar-modified nucleic acids, such as 2'-O-methylribonucleic acid (2'-OMe-RNA) and 2'-O,4'-C-spirocyclopropylene-bridged nucleic acid (scpBNA), have emerged as useful antisense materials. Herein, we aimed to combine these two advantages by designing dual modified nucleic acids 2'-OMe-RNA-5-OHCyt and scpBNA-5-OHCyt bearing the 5-OHCyt nucleobase to develop efficient and safe ASOs. We describe the synthesis of 2'-OMe-RNA-5-OHCyt and scpBNA-5-OHCyt phosphoramidites and their incorporation into oligonucleotides (ONs). The duplex-forming ability and base discrimination properties of 2'-OMe-RNA-5-OHCyt- and scpBNA-5-OHCyt-modified ONs were similar to those of 2'-OMe-RNA-Cyt- and scpBNA-mCyt-modified ONs, respectively. We also synthesized two 2'-OMe-RNA-5-OHCyt-modified ASOs, and one of the two was found to exhibit reduced hepatotoxicity while retaining target mRNA knockdown activity in in vivo experiments.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Ácidos Nucleicos , Humanos , RNA/metabolismo , Açúcares , Açúcares Ácidos , Oligonucleotídeos , Oligonucleotídeos Antissenso , Citosina
20.
Molecules ; 29(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38202663

RESUMO

Phyllanthus acuminatus has been studied for its vast medical and industrial potential. Phytochemical investigations reveal that the genus is a rich source of lignans, flavonoids, phenolics, terpenoids, and other metabolites. However, the phytochemical profile elucidation of this species still needs further research. The use of eliciting compounds such as salicylic acid and methyl jasmonate has managed to increase the production of secondary metabolites in plant cell cultures. Hairy roots of Phyllanthus acuminatus were produced in 250 mL flasks with a 16 h light/8 h darkness photoperiod under diffused light with a culture time of four weeks. The elicitors salicylic acid and methyl jasmonate were tested in 50 µM and 200 µM concentrations. Non-targeted analysis was done for the different treatments using HR-MS. Identified metabolites were grouped in phenylpropanoids, phenols, and mucic acids, and statistical analysis of relative concentrations was achieved. A significant change in phenols' relative concentrations appeared in the elicitations with salicylic acid. Because of the elicitation treatment, specific compounds increased their concentrations, some of which have known pharmacological effects and are used in treating chronic diseases. The best elicitation treatment was salicylic acid 50 µM as it increased by more than 100% the general content of phenols and phenylpropanoid derivates and triplicates the concentration of mucic acid derivates in treated hairy root extracts. The application of non-targeted analysis showed interesting changes in phytochemical concentration due to elicitation in Phyllanthus acuminatus hairy roots.


Assuntos
Acetatos , Ciclopentanos , Oxilipinas , Fenóis , Phyllanthus , Açúcares Ácidos , Espectrometria de Massas , Ácido Salicílico/farmacologia , Compostos Fitoquímicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...